Positive and sign changing solutions to a nonlinear Choquard equation
نویسندگان
چکیده
منابع مشابه
Multiple Solutions to a Magnetic Nonlinear Choquard Equation
We consider the stationary nonlinear magnetic Choquard equation (−i∇+ A(x))u+ V (x)u = (
متن کاملInfinitely many solutions for a bi-nonlocal equation with sign-changing weight functions
In this paper, we investigate the existence of infinitely many solutions for a bi-nonlocal equation with sign-changing weight functions. We use some natural constraints and the Ljusternik-Schnirelman critical point theory on C1-manifolds, to prove our main results.
متن کاملNondegeneracy of Nonradial Sign-changing Solutions to the Nonlinear Schrödinger Equation
We prove that the non-radial sign-changing solutions to the nonlinear Schrödinger equation ∆u− u + |u|p−1u = 0 in R , u ∈ H(R ) constructed by Musso, Pacard, and Wei [19] are non-degenerate. This provides the first example of a non-degenerate sign-changing solution to the above nonlinear Schrödinger equation with finite energy.
متن کاملPositive radial solutions of a singular elliptic equation with sign changing nonlinearities
We study the existence of positive radial solutions to the singular semilinear elliptic equation {−∆u = f (x, u) , in B u = 0, x ∈ ∂B. Throughout, our nonlinearity is allowed to change sign. The singularity may occur at u = 0 and |x | = 1. © 2005 Elsevier Ltd. All rights reserved. MSC: 34B15; 35J20
متن کاملBEHAVIOR OF SOLUTIONS TO A FUZZY NONLINEAR DIFFERENCE EQUATION
In this paper, we study the existence, asymptotic behavior of the positive solutions of a fuzzy nonlinear difference equation$$ x_{n+1}=frac{Ax_n+x_{n-1}}{B+x_{n-1}}, n=0,1,cdots,$$ where $(x_n)$ is a sequence of positive fuzzy number, $A, B$ are positive fuzzy numbers and the initial conditions $x_{-1}, x_0$ are positive fuzzy numbers.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2013
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2013.04.081